NCERT Solution For Class 10 Maths Chapter 8 Introduction To Trigonometry Exercise 8.3

NCERT Solution For Class 10, Maths, Chapter 8, Introduction To Trigonometry, Exercise 8.3 is based on Trigonometric Ratios of Complementary Angles.

NCERT Solution For Class 10, Maths, Chapter 8, Introduction To Trigonometry, Ex. 8.3

Class 10, Maths, Chapter 8, Exercise 8.3, Solutions

Q.1. Evaluate:

(i) $\frac{\sin \,\,{{18}^{0}}}{\cos \,\,{{72}^{0}}}$   

(ii) $\frac{\tan \,\,{{26}^{0}}}{\cot \,\,{{64}^{0}}}$

(iii) cos 480 – sin 420 

(iv) cosec 310 – sec 590

 Ans:

NCERT Solution For Class 10, Maths, Chapter 8, Introduction To Trigonometry, Ex. 8.3, Q. 1

Q.2. Show that:

(i) tan 48° tan 23° tan 42° tan 67° = 1

(ii) cos 38° cos 52° – sin 38° sin 52° = 0

Ans:

NCERT Solution For Class 10, Maths, Chapter 8, Introduction To Trigonometry, Ex. 8.3, Q. 2

Q.3. If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.

Ans:

NCERT Solution For Class 10, Maths, Chapter 8, Introduction To Trigonometry, Ex. 8.3, Q. 3

Q.4. If tan A = cot B, prove that A + B = 90°.

Ans:

NCERT Solution For Class 10, Maths, Chapter 8, Introduction To Trigonometry, Ex. 8.3, Q. 4

Q.5. If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A.

Ans:

NCERT Solution For Class 10, Maths, Chapter 8, Introduction To Trigonometry, Ex. 8.3, Q. 5

Q.6. If A, B and C are interior angles of a triangle ABC, then show that $\sin \left( \frac{B+C}{2} \right)=\cos \frac{A}{2}$

Ans:

NCERT Solution For Class 10, Maths, Chapter 8, Introduction To Trigonometry, Ex. 8.3, Q. 6

Q.7. Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.

Ans:

Given, sin 67°+ cos 75°

=sin (90°-23°) + cos (90° – 15°)

(∵ sin (90°- θ) = cos θ)

= cos 23° + sin 15°

Class 10 , Maths, Chapter 8, Introduction To Trigonometry (All exercise)