NCERT Solutions For Class 7 Maths Chapter 13 Exponents and Powers Exercise 13.1

Class 7, Maths, Chapter 13, Exercise 13.1 Solutions

Q.1. Find the value of:

(i) 26

(ii) 93

(iii) 112

(iv) 54

Ans:

(i) 26  = 2 x 2 x 2 x 2 x 2 x 2 = 64

(ii) 93  = 9 x 9 x 9 = 729

(iii) 112  = 11 x 11 = 121

(iv) 54 = 5 x 5 x 5 x 5 = 625

Q.2. Express the following in exponential form:

(i) 6 × 6 × 6 × 6

(ii) t × t

(iii) b × b × b × b

(iv) 5 × 5× 7 × 7 × 7

(v) 2 × 2 × a × a

(vi) a × a × a × c × c × c × c × d

Ans:

(i) 6 × 6 × 6 × 6 = 64

(ii) t × t = t2

(iii) b × b × b × b = b4

(iv) 5 × 5× 7 × 7 × 7 = 52 x 73

(v) 2 × 2 × a × a = 22 x a2

(vi) a × a × a × c × c × c × c × d = a3 x c4 x d

Q.3. Express each of the following numbers using exponential notation:

(i) 512

(ii) 343

(iii) 729

(iv) 3125

NCERT Solutions For Class 7 Maths Chapter 13 Exponents and Powers Exercise 13.1 Q.3 (i)

NCERT Solutions For Class 7 Maths Chapter 13 Exponents and Powers Exercise 13.1 Q.3 (ii)

NCERT Solutions For Class 7 Maths Chapter 13 Exponents and Powers Exercise 13.1 Q.3 (iii)

NCERT Solutions For Class 7 Maths Chapter 13 Exponents and Powers Exercise 13.1 Q.3 (iv)

Q.4. Identify the greater number, wherever possible, in each of the following?

(i) 43 or 34

(ii) 53 or 35

(iii) 28 or 82

(iv) 1002 or 2100

(v) 210 or 102

Ans:

(i) 43 or 34

      43 = 4 x 4 x 4 = 64

      34 = 3 x 3 x 3 x 3 = 81

So, 64 < 81

Hence, 34 is greater than 43.

(ii) 53 or 35

53 = 5 x 5 x 5 = 125

35 = 3 x 3 x 3 x 3 x 3= 243

So, 125 < 243

Hence, 35 is greater than 53.

(iii) 28 or 82

28 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 256

82 = 8 x 8 = 64

So, 256 > 64

Hence, 28 is greater than 82   .

(iv) 1002 or 2100

1002 = 100 x 100 = 10000

If we take , 210 = 2x2x2x2x2x2x2x2x2x2= 1024. Which means 2100 is very large than 1002.

So, 1002 < 2100

Hence, 2100 is greater than 1002   

(v) 210 or 102

210 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 1024

102 = 10 x 10= 100

So, 210 > 102

Hence, 210 is greater than 102   .

Q.5. Express each of the following as product of powers of their prime factors:

(i) 648

(ii) 405

(iii) 540

(iv) 3,600

NCERT Solutions For Class 7 Maths Chapter 13 Exponents and Powers Exercise 13.1 Q.5 (i to ii)

NCERT Solutions For Class 7 Maths Chapter 13 Exponents and Powers Exercise 13.1 Q.5 (iii to iv)

Q.6. Simplify:

(i) 2 × 103

(ii) 72 × 22

(iii) 23 × 5

(iv) 3 × 44

(v) 0 × 102

(vi) 52 × 33

(vii) 24 × 32

(viii) 32 × 104

Ans:

(i) 2 × 103

= 2 x 10 x 10 x 10

= 2 x 1000 = 2000

(ii) 72 × 22

    = 7 x 7 x 2 x 2

      = 49 x 4 = 196

(iii) 23 × 5

    = 2 x 2 x 2 x 5

      = 8 x 5

      = 40

(iv) 3 × 44

    = 3 x 4 x 4 x 4 x 4

      = 3 x 256

      = 768

(v) 0 × 102

    = 0 x 10 x 10

      = 0 x 100

      = 0

(vi) 52 × 33

= 5 x 5 x 3 x 3 x 3

= 25 x 27

= 675

(vii) 24 × 32

= 2 x 2 x 2 x 2 x 3 x 3

= 16 x 9

= 144

(viii) 32 × 104

= 3 x 3 x 10 x 10 x 10 x 10

= 9 x 10000

= 90000

Q.7. Simplify:

(i) (– 4)3

(ii) (–3) × (–2)3

(iii) (–3)2 × (–5)2

(iv) (–2)3 × (–10)3

Ans:

(i) (– 4)3

= (- 4) x ( – 4) x (- 4) = – 64

(ii) (–3) × (–2)3

= (- 3) x (- 2) x (- 2) x (- 2)

= (- 3) x (– 8) = 24

(iii) (–3)2 × (–5)2

= (-3) x (-3) x (-5) x (-5)

= 9 x 25 = 225

(iv) (–2)3 × (–10)3

= (- 2) x (- 2) x (- 2) x (-10) x(-10) x (-10)

= (- 8) x (–1000) = 8000

Q.8. Compare the following numbers:

    (i) 2.7 × 1012; 1.5 × 108

(ii) 4 × 1014; 3 × 1017

Ans:

(i) 2.7 × 1012; 1.5 × 108

On comparing the exponents of base 10,

      2.7 x 1012 > 1.5 x108

(ii) 4 × 1014; 3 × 1017

On comparing the exponents of base 10,

      4×1014 < 3×1017

NCERT Solutions For Class 7 Maths, Chapter 13 Exponents and Powers (All Exercises)