NCERT Solutions For Class 7 Maths Chapter 12 Algebraic Expressions Exercise 12.3

Class 7, Maths, Chapter 12, Exercise 12.3 Solutions

Q.1. If m = 2, find the value of:

(i) m – 2

(ii) 3m – 5

(iii) 9 – 5m

(iv) 3m2 – 2m – 7

(v) $\frac{5m}{2}-4$

Ans:

(i) m-2

Putting m = 2, we get

⟹        m – 2

⟹        2 – 2 = 0

(ii) 3m-5

Putting m = 2, we get

⟹        3m – 5

⟹        (3 × 2 ) – 5

⟹        6 – 5 = 1

(iii) 9-5m

Putting m = 2, we get

⟹        9 – 5m

⟹        9 – (5 × 2) = 9 – 10 = -1 

(iv) 3m2 – 2m – 7

Putting m = 2, we get

⟹        3m2 – 2m – 7

⟹        3(2)2 – 2 (2) – 7

⟹        (3 × 2 × 2) – (2 × 2) – 7

⟹        12 – 4 – 7  

⟹        12 – 11 = 1

(v)   $\frac{5m}{2}-4$

Putting m = 2, we get

⟹        $\frac{5m}{2}-4$

⟹        $\frac{5(2)}{2}-4$

⟹        $\frac{10}{2}-4$

⟹        5 – 4 =1

Q.2. If p = – 2, find the value of:

(i) 4p + 7

(ii) – 3p2 + 4p + 7

(iii) – 2p3 – 3p2 + 4p + 7

Ans:

(i) 4p + 7

Putting p = -2 ,we get

⟹        4p + 7

⟹        4(-2) + 7 = -8 + 7 = -1

(ii) – 3p2 + 4p + 7

Putting p = -2 ,we get

⟹        – 3p2 + 4p + 7

⟹        – 3(-2)2 + 4(-2) + 7

⟹        – 3(-2 x -2) + 4(-2) + 7

⟹        – 3(4) – 8 + 7

⟹        -12 – 8 + 7

⟹        -20 + 7 = – 13

(iii) – 2p3 – 3p2 + 4p + 7

Putting p = -2 ,we get

⟹        – 2p3 – 3p2 + 4p + 7

⟹        – 2(-2)3 – 3(-2)2 + 4(-2) + 7

⟹        – 2(-2 x -2 x -2) – 3(-2 x -2) + 4(-2) + 7

⟹        – 2(-8) – 3(4) + 4(-2) + 7

⟹        16 – 12 – 8 + 7

⟹        16 + 7 – 12 – 8

⟹        23 – 20 = 3

Q.3. Find the value of the following expressions, when x = –1:

(i) 2x – 7

(ii) – x + 2    

(iii) x2 + 2x + 1  

(iv) 2x2 – x – 2

Ans:

(i) 2x – 7

Putting x = -1 , we get

⟹        2x – 7

⟹        2(-1) – 7

⟹        – 2 – 7 = – 9

 (ii) – x + 2    

Putting x = -1 , we get

⟹        – x + 2

⟹        – (-1) + 2 = 1 + 2 = 3

 (iii) x2 + 2x + 1  

Putting x = -1 , we get

⟹        x2 + 2x + 1

⟹        (-1)2 + 2(-1) + 1

⟹        (-1) (-1) + 2(-1) + 1

⟹        1 – 2 + 1 = 0

 (iv) 2x2 – x – 2

Putting x = -1 , we get

⟹        2x2 – x – 2

⟹        2(-1)2 – (-1) – 2

⟹        2(-1 x -1) – (-1) – 2

⟹        2(1) + 1 – 2

⟹        2 + 1 – 2

⟹        3 – 2 = 1

Q.4. If a = 2, b = – 2, find the value of:

(i) a2 + b2

(ii) a2 + ab + b2  

(iii) a2 – b2

Ans:

(i) a2 + b2

Putting a = 2 and b = -2, we get

⟹        a2 + b2

⟹        (2)2 + (-2)2

⟹        (2 x 2) + (-2 x -2)

⟹        4 + 4 = 8

(ii) a2 + ab + b2  

Putting a = 2 and b = -2, we get

⟹        a2 + ab + b2

⟹        (2)2 + (2)(-2) + (-2)2

⟹        (2×2) + (2)(-2) + (-2 x -2)

⟹        (4) + (-4) + (4)

⟹        4 – 4 + 4 = 8 – 4 = 4

(iii) a2 – b2

Putting a = 2 and b = -2, we get

⟹        a2 – b2

⟹        (2)2 – (-2)2

⟹        (2 x 2) – (-2 x -2)

⟹        4 – 4 = 0

Q.5. When a = 0, b = – 1, find the value of the given expressions:

(i) 2a + 2b    

(ii) 2a2 + b2 + 1

(iii) 2a2b + 2ab2 + ab    

(iv) a2 + ab + 2

Ans:

(i) 2a + 2b    

Putting a = 0 and b = -1, we get

⟹        2a + 2b

⟹        2(0) + 2(-1)

⟹        0 – 2 = – 2

(ii) 2a2 + b2 + 1

Putting a = 0 and b = -1, we get

⟹        2a2 + b2 + 1

⟹        2(0)2 + (-1)2 + 1

⟹        0 + 1 + 1 = 2

(iii) 2a2b + 2ab2 + ab    

Putting a = 0 and b = -1, we get

⟹        2a2b + 2ab2 + ab

⟹        2(0)2(-1) + 2(0)(-1)2 + (0)(-1)

⟹        0 + 0 + 0 = 0

(iv) a2 + ab + 2

Putting a = 0 and b = -1, we get

⟹        a2 + ab + 2

⟹        (0)2 + (0)(-1) + 2

⟹        0 + 0 + 2 = 2

Q.6. Simplify the expressions and find the value if x is equal to 2

(i) x + 7 + 4 (x – 5)

(ii) 3 (x + 2) + 5x – 7

(iii) 6x + 5 (x – 2)

(iv) 4(2x – 1) + 3x + 11

Ans:

(i) x + 7 + 4 (x – 5)

We have,

      = x + 7 + 4 (x – 5)

      = x + 7 + 4x – 20

Putting x = 2, we get

      = (2) + 7 + 4(2) – 20

      = 2 + 7 + 8 – 20

      = 17 – 20

      = -3

(ii) 3 (x + 2) + 5x – 7

We have,

      = 3 (x + 2) + 5x – 7

      = 3x + 6 + 5x – 7

      = 3x + 5x + 6 – 7

      = 8x – 1

Putting x = 2, we get

      = 8(2) – 1

      = 16 – 1 = 15

(iii) 6x + 5 (x – 2)

We have,

    = 6x + 5 (x – 2)

      = 6x + 5x – 10

      = 11x – 10

Putting x = 2, we get

      = 11(2) – 10

      = 22 – 10 = 12

(iv) 4(2x – 1) + 3x + 11

We have,

      = 4(2x – 1) + 3x + 11

      = 8x – 4 + 3x + 11

      = 8x + 3x – 4 + 11

      = 11x + 7

Putting x = 2, we get

      = 11(2) + 7

      = 22 + 7 = 29

Q.7. Simplify these expressions and find their values if x=3, a=–1, b=–2.

(i) 3x – 5 – x + 9

(ii) 2 – 8x + 4x + 4

(iii) 3a + 5 – 8a + 1

(iv) 10 – 3b – 4 – 5b

(v) 2a – 2b – 4 – 5 + a

Ans:

(i) 3x – 5 – x + 9

We have,

      = 3x – 5 – x + 9

      = 3x – x – 5 + 9

      = 2x + 4

Putting x = 3, we get

      = 2(3) + 4

      = 6 + 4 = 10

(ii) 2 – 8x + 4x + 4

We have,

      = 2 – 8x + 4x + 4

      = – 8x + 4x + 4 + 2

      = – 4x + 6

Putting x = 3, we get

      = – 4(3) + 6

      = – 12 + 6

      = – 6

(iii) 3a + 5 – 8a + 1

We have,

      = 3a + 5 – 8a + 1     

      = 3a – 8a + 5 + 1           

      = – 5a + 6

Putting a = -1, we get

      = – 5(-1) + 6

      =  5 + 6 = 11

(iv) 10 – 3b – 4 – 5b

We have,

      = 10 – 3b – 4 – 5b

      = – 3b – 5b – 4 +10

      = – 8b + 6

Putting b = -2, we get

      = – 8(-2) + 6

      = 16 + 6 = 22

(v) 2a – 2b – 4 – 5 + a

We have,

      = 2a – 2b – 4 – 5 + a

      = 2a + a – 2b – 4 – 5

      = 3a – 2b – 9

Putting a = -1 and b = -2, we get

      = 3(-1) – 2(-2) – 9

      = – 3 + 4 – 9

      = 4 – 9 – 3

      = 4 – 12 = – 8  

Q.8. (i) If z = 10, find the value of z3 – 3 (z – 10).

(ii) If p = – 10, find the value of p2 – 2p – 100

Ans:

(i) If z = 10, find the value of z3 – 3 (z – 10).

We have, z3 – 3 (z – 10)

      = z3 – 3z + 30

Putting z = 10, we get

      = (10)3 – 3(10) + 30

      = (10 x 10 x 10) – 3(10) + 30

      = 1000 – 30 + 30

      = 1000

if z = 10, then the value of z3 – 3 (z – 10) is 1000.

(ii) If p = – 10, find the value of p2 – 2p – 100

We have, p2 – 2p – 100

Putting p = -10, we get

            =  (-10)2 – 2(-10) – 100

            =  (-10 x -10) – 2(-10) – 100

            =  100 + 20 – 100

            =  100 –100 + 20  = 20

If p = – 10, then the value of p2 – 2p – 100 is 20.

Q.9. What should be the value of ‘a’ if the value of 2x2 + x – a equals to 5, when x = 0?

Ans: According to question,

⟹        2x2 + x – a = 5

Putting x = 0, we get

⟹        2(0)2 + (0) – a = 5

⟹        0 + 0 – a = 5

⟹        – a = 5              (Multiplying by -1)

⟹        a = -5

Hence, the value of a is -5

Q.10. Simplify the expression and find its value when a = 5 and b = – 3.

2(a2 + ab) + 3 – ab

Ans: We have, 2(a2 + ab) + 3 – ab

            = 2a2 + 2ab + 3 – ab

            = 2a2 + 2ab– ab+ 3

            = 2a2 + ab + 3

Putting a = 5 and b =  -3, we get

            = 2(5)2 + (5)(-3) + 3

            = 2(5 x 5) + (5)(-3) + 3

            = 2(25) + (-15) + 3

            = 50 -15 + 3

            = 53 – 15

            = 38

Q.10. Simplify the expression and find its value when a = 5 and b = – 3.

2(a2 + ab) + 3 – ab

Ans: We have, 2(a2 + ab) + 3 – ab

            = 2a2 + 2ab + 3 – ab

            = 2a2 + 2ab– ab+ 3

            = 2a2 + ab + 3

Putting a = 5 and b =  -3, we get

            = 2(5)2 + (5)(-3) + 3

            = 2(5 x 5) + (5)(-3) + 3

            = 2(25) + (-15) + 3

            = 50 -15 + 3

            = 53 – 15

            = 38

NCERT Solutions For Class 7 Maths, Chapter 12 Algebraic Expressions (All Exercises)